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ABSTRACT

The Prediction of Intensity Model Error (PRIME) forecasting scheme uses various large-scale meteoro-

logical parameters as well as proxies for initial condition uncertainty and atmospheric flow stability to provide

operational forecasts of tropical cyclone intensity forecast error. PRIME forecasts of bias and absolute error

are developed for the Logistic Growth Equation Model (LGEM), Decay Statistical Hurricane Intensity

Prediction Scheme (DSHP), HurricaneWeather Research and Forecasting InterpolatedModel (HWFI), and

Geophysical Fluid Dynamics Laboratory Interpolated Hurricane Model (GHMI). These forecasts are

evaluated in theAtlantic and east Pacific basins for the 2011–15 hurricane seasons. PRIME is also trainedwith

retrospective forecasts (R-PRIME) from the 2015 version of each model. PRIME error forecasts are sig-

nificantly better than forecasts that use error climatology for a majority of forecast hours, which raises the

question of whether PRIME could provide more than error guidance. PRIME bias forecasts for each model

are used to modify intensity forecasts, and the corrected forecasts are compared with the original intensity

forecasts. For almost all basins, forecast intervals, and versions of PRIME, the bias-corrected forecasts

achieve significantly lower errors than the original intensity forecasts. PRIME absolute error and bias fore-

casts are also used to create unique ensembles of the four models. These PRIME-modified ensembles are

found to frequently outperform the intensity consensus (ICON), the equally weighted ensemble of DSHP,

LGEM, GHMI, and HWFI.

1. Introduction

An accurate forecast of a major tropical cyclone (TC)

landfall represents one of the most remarkable feats of

the earth sciences. Forecasting agencies can now pro-

duce skillful 120-h forecasts of the intensity, timing, and

location of a TC making landfall. These long-range TC

forecasts appear particularly impressive within the

context of other natural disasters, such as earthquakes,

tornadoes, tsunamis, and volcanic eruptions, which can

only be diagnosed hours or sometimes seconds before-

hand. The ability to provide track and wind speed

predictions at longer forecast times has prompted

emergency managers, public officials, businesses, and

citizens to make numerous costly and life-changing

decisions several days in advance of landfall. As a result,

the largest evacuations (between 1.5 and 3 million peo-

ple) in U.S. history1 were all triggered by forecasts of

potential TC landfalls: Hurricanes Rita, Floyd, Georges,

and Gustav (Urbina and Wolshon 2003; Cutter and

Smith 2009; Litman 2006). Based on the influence of

these forecasts on their end users, it is imperative that

they are reliable and accurate.

At first glance, the recent efforts of the scientific

community (Gall et al. 2013) to lower the average

errors of Atlantic and east Pacific intensity (Bhatia and

Nolan 2015, hereafter BN15; DeMaria et al. 2014) and

track (Cangialosi and Franklin 2016; see review in
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introduction of DeMaria et al. 2014) model guidance

appear successful. However, TC intensity models have

only improved at about 1/3 to 1/2 of the rate observed for

the track models between 24 and 72h and are lagging at

longer forecast hours as well (DeMaria et al. 2014). The

lower rate of improvement for intensity forecast guid-

ance is visible in the National Hurricane Center (NHC)

official (OFCL) forecast verification statistics. From

2007 to 2015, OFCL track forecasts have approximately

averaged, depending on the basin forecast hour, 50%–

250% more skill than OFCL intensity forecasts, when

comparing each set of forecasts to their respective

benchmark models (Cangialosi and Franklin 2016;

Cangialosi and Franklin 2013; Franklin 2010). Although

some studies conclude that the plateauing intensity

forecast performance could be the result of a 2–3-day

intrinsic predictability limit for TC intensity (Hakim

2013; Brown and Hakim 2013), recent work by Emanuel

and Zhang (2016) suggests that intensity forecasts could

be more skillful out to 7 days. Additionally, Judt et al.

(2016) showed that the large-scale components of Hur-

ricane Earl’s wind field were skillfully forecasted up to

7 days in advance.

The purpose of this study is to reduce the gap between

current intensity forecast performance and the theo-

retical limits proposed by Judt et al. (2016) and Emanuel

and Zhang (2016). Specifically, we try to lower the ab-

solute error (AE) of the intensity forecasts produced by

the Decay Statistical Hurricane Intensity Prediction

Scheme (DSHP), Logistic Growth Equation Model

(LGEM), Geophysical Fluid Dynamics Laboratory In-

terpolated Hurricane Model (GHMI), and Hurricane

Weather Research and Forecasting Interpolated Model

(HWFI) and outperform the equally weighted ensemble

of the four models, intensity consensus (ICON), in the

Atlantic and east Pacific basins. To achieve this goal, the

meteorological research community typically recom-

mends finer spatial and temporal resolution for dy-

namical models, more advanced data assimilation

techniques, and the acquisition of additional observa-

tions by deploying more instrumentation (Zhang et al.

2011). Forecast postprocessing such as bias corrections

and ensembles are inexpensive solutions that can sup-

plement these intensity forecast improvement tech-

niques. Our forecast modification strategies differ

considerably from other statistical studies because they

are situation-dependent, defined by the nature of the TC

and its surroundings.

Bhatia and Nolan (2013, hereafter BN13) provided

the foundation for this research by demonstrating that

the high variance in intensity forecast performance

between different storms, models, and days is depen-

dent on TC attributes and synoptic conditions. BN13

concluded that the average forecast error of a model

often served as a poor guide for how an individual

forecast would perform and suggested that certain var-

iables could potentially anticipate high and low error

forecasts. Based on the results of BN13, BN15 de-

veloped the Prediction of Intensity Model Error

(PRIME) model to forecast the bias and AE of DSHP,

LGEM, GHMI, and HWFI intensity forecasts in the

Atlantic basin. In addition to the dynamical parameters

considered in BN13, proxies for atmospheric flow sta-

bility and initial condition error served as predictors in

PRIME’s stepwise multiple linear regression formula.

Independent verification of PRIME predictions of AE

and bias revealed PRIMEhad significantly2 lower errors

than climatological forecasts3 for all forecast hours and

models from 2007 to 2014. A second version of PRIME4

called Retrospective PRIME (R-PRIME) was de-

veloped using the retrospective forecasts of models that

were operational during 2014. The R-PRIME model

also performed very well, and the AE of its error fore-

casts were lower than PRIME.

Our work updates BN15 by adding the 2015 hurricane

season to the PRIME data sample and developing

PRIME for the east Pacific basin. The following section

shows PRIME and R-PRIME’s performance in both

basins from 2011 to 2015. For all basins, versions of

PRIME, and models, PRIME outperforms climatolog-

ical forecasts of bias and AE. The encouraging perfor-

mance of PRIME indicates its output could not only be

used as a forecasting supplement that quantifies how

much confidence should be placed in an intensity fore-

cast but also as an intensity forecast improvement tool.

Section 3 explores different ways PRIME forecasts can

be manipulated to increase the accuracy of intensity

forecasts. First, PRIME bias forecasts are tested as

corrections to intensity forecasts. The errors of the bias-

corrected models are then compared with the errors of

the original models to determine whether TC intensity

forecasts are significantly improved. The second part of

section 3 is devoted to ensembles that are modified

based on PRIME error forecasts. Seven ensembles

composed of DSHP, LGEM, GHMI, and HWFI are

2Unless specified, significance in this study means a paired t test

[e.g., Eq. 5.11 from Wilks (2011)], adjusted for serial correlation,

outputs a 95% likelihood that the null hypothesis is invalid.
3 Note that here the term climatological forecasts refers to the

prediction of intensity forecast errors based on a multiyear average

of past forecast performance.
4 Used throughout the manuscript as an umbrella term for all

forecasts created by the PRIME forecasting scheme. Unless

contextually specified, ‘‘PRIME’’ refers to both the PRIME and

R-PRIME models.
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assembled and their skill score (SS) relative to ICON is

presented. Finally, conclusions and future work are

provided in section 4.

2. Updated PRIME and R-PRIME

BN15 showed R-PRIME and PRIME were able to

skillfully predict the AE and bias of DSHP, LGEM,

GHMI, and HWFI intensity forecasts over a 7- and 8-yr

independent verification sample. PRIME was sub-

sequently tested as an operational forecasting tool to

communicate the expected error of TC intensity fore-

casts. R-PRIME was utilized to produce error forecasts

for the 2015Atlantic basin hurricane season, which were

available at the Cooperative Institute for Research via

the Atmosphere real-time products web page.5 The

methodology and data sources used in BN15 were fol-

lowed to create operational PRIME forecasts. Table 1,

copied from the corresponding table in BN15, lists all

the predictors considered for the creation of operational

PRIME. The second-order polynomial transformation

of the initial distance to land (LDIS) predictor was

added to the bias predictor pool because it was the only

nonlinear predictor, for either predictand, that improved

the forecasts of all models, forecast intervals, and versions

of PRIME. Unfortunately, the error statistics for the 2014

version of the models were used to develop operational

R-PRIME because the 2015 retrospective data were not

available.6 The outdated retrospective data coupled with

the small sample size for the 2015Atlantic basin hurricane

season led to a lack of statistically significant results. As a

result, the verification figures for the operational error

forecasts in 2015 are omitted here.

This study focuses on the performance of PRIME

during 2011–15. Retrospective runs, created by applying

the 2015 version of each model to storms during 2011–14,

are used to train R-PRIME. The length of the train-

ing period is shortened compared with BN15, be-

cause fewer seasons of retrospective forecasts were

produced for GHMI and HWFI. In addition to the At-

lantic basin, PRIME is also developed for the east Pacific

basin during this time frame. The same statistical frame-

work outlined in BN15 is used to produce PRIME fore-

casts of AE and bias for DSHP, LGEM, GHMI, and

HWFI in both basins. Optimal predictors are selected

TABLE 1. Dynamical and proxy predictors for PRIME. Abbreviations are listed for each predictor. Boldface predictor abbreviations

indicate predictors whose 0-h and forecast average (with a letterA added as a prefix to the abbreviations in themanuscript) values are both

used. If the predictor value varies depending on the model, a Y is listed in the third column. An N is used if the sameGFS output from the

SHIPS files is used to produce the predictor for every model.

Dynamical

predictors Abbrev

Changes with

model?

(Y/N) Proxies Abbrev

Changes

with model?

(Y/N)

Percentage of area of

GOES cold pixels

GCLD N Std dev of the intensity forecast

ensemble

SPRD N

Std dev of GOES

brightness temperature

GBRT N Deviation of intensity forecast from

ensemble mean

DFEM Y

850–200-hPa shear

magnitude

SHR N Absolute DFEM ADEM Y

Storm speed SSPD N Deviation of track forecast from

ensemble mean

DTRK Y

Sin(850–200-hPa shear

direction)

SHRDIR N Forecasted intensity change FIC Y

Ocean heat content OHC N Absolute FCIC AFIC Y

Potential intensity POT N Previous 12-h intensity change P12C Y

850-hPa vorticity VOR N Previous 12-h error P12E Y

200-hPa divergence DIV N Distance to land LDIS N

850–700-hPa relative

humidity

RH N Forecasted distance to land FLND Y

Initial intensity 0INT Y

Forecast intensity FINT Y

Latitude LAT N

Longitude LON N

5 Information online at http://rammb.cira.colostate.edu/products/

tc_realtime/. For each storm, choose ‘‘Model Products’’ and scroll

down to the bottom of the web page.

6 Obtaining the appropriate retrospective forecasts will not be an

issue in subsequent years.
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from Table 1 for each model, version of PRIME, basin,

and predictand. Unlike BN15, where nonlinear functions

are used to modify certain independent variables, no

fitted predictors are considered here because opera-

tional convenience and reproducibility is prioritized.

PRIME forecasts are only computed for a particular

forecast time if the TC is at least a tropical or subtropical

depression initially and at verification, all four models

have an intensity forecast available in the National Ocean-

ographic and Atmospheric Administration’s (NOAA)

Automated Tropical Cyclone Forecast (ATCF; Sampson

and Schrader 2000) ‘‘a-deck’’ files, and a verifying TC in-

tensity is available in the best-track dataset (Landsea and

Franklin 2013). These verification rules result in a data-

set that is completely homogeneous among the models.

Tables 2–5 examine the forecasts from each model that

meet these criteria.

Tables 2 and 3, respectively, list theAE, bias, and sample

size for the real-time intensity forecasts and retrospective

forecasts of DSHP, LGEM, GHMI, and HWFI in the At-

lantic basin. Tables 4 and 5 contain the corresponding in-

formation for the east Pacific basin. As in BN15, real-time

cases are added to the retrospective cases to increase the

sample sizes inTables 3 and 5.GHMI retrospective data for

the 2013 hurricane season are missing in the Atlantic basin,

and GHMI retrospective data were not generated in the

east Pacific basin during 2011 and 2013. The real-time

GHMI forecasts from the missing years are added to the

sample because the other three models produced retro-

spective forecasts during these years. PRIME forecasts are

only issued when all four models have an intensity forecast

available, so the additional GHMI forecasts enhanced the

sample size of all models. This expanded dataset led to

better results in both basins so all the presented R-PRIME

analyses use an augmented sample.

There are still slightly fewer cases in the retrospective

sample compared with the real-time sample, because

retrospective HWFI forecasts are only generated when

tail-wind Doppler radar and retrospective Global

Forecast System (GFS) data are available. However, the

overall trends in the real-time model performance are

almost identical when considering only the cases that are

available for both the retrospective and real-time fore-

casts. In the Atlantic basin, recent upgrades to HWFI

TABLE 2. The average bias and AE (kt, where 1 kt 5 0.51m s21) for HWFI, GHMI, LGEM, and DSHP are calculated using the

operational forecasts of Atlantic basin storms between 2011 and 2015. The first column represents the number of verified real-time

forecasts. For each model and forecast interval, the first entry in a table cell is the bias and the second entry is the absolute error.

BIAS, AE (kt)

No. of cases No. of hours HWFI GHMI LGEM DSHP

1219 12 20.6, 6.2 20.6, 6.7 20.8, 6.2 20.3, 6.1

1093 24 20.7, 8.8 21.8, 9.7 20.7, 9.1 0.8, 9.0

964 36 0.4, 10.9 21.7, 12.4 20.3, 11.2 2.0, 11.0

841 48 1.9, 12.6 0.4, 14.1 0.0, 13.2 2.9, 12.9

728 60 3.4, 14.2 2.6, 15.6 0.1, 14.5 3.5, 14.3

630 72 4.4, 15.7 4.9, 17.6 0.4, 15.2 3.8, 15.1

538 84 5.0, 16.7 7.2, 19.1 1.1, 15.5 3.8, 15.5

460 96 5.0, 17.7 8.6, 20.7 1.7, 16.2 3.2, 16.0

397 108 5.2, 19.4 10.3, 22.1 1.9, 16.7 2.3, 16.8

348 120 5.7, 21.0 12.2, 23.5 1.1, 17.2 0.6, 16.7

TABLE 3. As in Table 2, but for entries that correspond to the statistics of verified retrospective forecasts for each model at each forecast

interval. These values are calculated using Atlantic basin storms between 2011 and 2015.

BIAS, AE (kt)

No. of cases No. of hours HWFI GHMI LGEM DSHP

931 12 21.1, 5.8 20.1, 6.4 20.8, 6.2 20.3, 6.1

838 24 21.3, 8.1 20.1, 8.8 20.7, 8.8 0.9, 8.9

759 36 21.2, 9.9 0.6, 11.2 20.6, 10.8 1.8, 11.0

677 48 21.5, 10.8 1.2, 12.9 20.5, 12.3 2.5, 12.8

595 60 21.4, 11.3 1.8, 14.2 20.9, 13.2 3.1, 14.1

524 72 21.2, 11.7 2.6, 15.6 21.0, 13.5 3.5, 14.6

462 84 20.4, 12.0 3.8, 16.6 20.4, 13.7 4.0, 15.0

401 96 20.2, 12.7 5.0, 18.2 20.1, 14.7 3.8, 15.9

348 108 0.0, 14.0 6.9, 19.7 20.1, 15.5 3.1, 16.6

306 120 1.1, 15.3 8.4, 20.9 20.8, 16.3 2.0, 16.7
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(Atlas et al. 2015) have resulted in forecasts with sig-

nificantly lower AE and biases. LGEM, GHMI,7 and

DSHP Atlantic basin retrospective forecasts also dis-

played lower AE than the real-time forecasts but not to

the same degree as HWFI. For all models, the largest

improvements are observed for longer forecast hours.

The models exhibit similar behavior in the east Pacific

basin, but the retrospective forecasts show less im-

provement over the real-time forecasts. Additionally,

LGEM, GHMI, and HWFI 12–60-h forecasts have

large negative biases for both the real-time and retro-

spective forecasts whereas in the Atlantic basin, the

biases are mainly positive and smaller.

As in BN15, our primary concern is providing in-

sight on how PRIME will perform in an operational

setting, so all error forecasts are independently veri-

fied using cross validation (Wilks 2011). For our cross

validation, all but one of the years are used as the

training data, and then the excluded year is used for

validation; this procedure is repeated for all years.

Figures 1–4 show the average AE of R-PRIME,

PRIME, and climatological forecasts of AE and bias

in the Atlantic and east Pacific basin from 2011 to

2015. The sample size is limited to only include the

cases available for both PRIME and R-PRIME. For

almost all forecast intervals, models, predictands, and

basins, R-PRIME outperformed PRIME,8 and both ver-

sions of PRIME had smaller errors than their respective

climatological forecasts.

Figure 1 shows the 2011–15 averageAE of R-PRIME,

PRIME, and climatological AE predictions in the At-

lantic basin. The number of cases for each forecast in-

terval is approximately equal to those listed in Table 3.

For all models and versions of PRIME, theAEof 0–96-h

forecasts9 is significantly less than the AE of the corre-

sponding climatological forecasts. Additionally, GHMI

PRIME and R-PRIME AE forecasts are significantly

better than climatological forecasts at all forecast hours.

Figure 2 is similar to Fig. 1 except it shows the average

AE of PRIME and R-PRIME bias predictions com-

pared with climatological bias forecasts. Besides 96–

120-h R-PRIME forecasts of HWFI bias, PRIME and

R-PRIME bias forecasts are significantly better than

the corresponding climatological forecasts. As expected

from Tables 2 and 3, switching from real-time to retro-

spective models improved the climatological and

PRIME error forecasts for the dynamical models more

than the statistical models. The large modifications to

the model configurations of real-time HWFI and GHMI

over the time series caused inconsistent forecast per-

formance, which makes it more difficult for climato-

logical forecasts to anticipate error based on past

statistics. At the same time, PRIME suffers because the

derived predictor–error relationships for these models

are not representative of the whole forecast sample.

DSHP and LGEM have more consistent formulations

throughout the sample, which results in PRIME and

R-PRIME behaving similarly for these models.

Compared with the results in BN15, the skill of

R-PRIME and PRIME forecasts diminished. There are

three main reasons for this behavior. First, we selected a

more current time frame for the analysis of PRIME,

even though all of the evaluated models have produced

real-time intensity forecasts since 2007. The models

that produce the real-time forecasts from 2011 to 2014

more closely resemble the 2015 version of themodels, so

PRIMEperformance becomesmore similar to R-PRIME.

The real-time forecasts are formulated more consistently

TABLE 4. As in Table 2, but for the average bias and AE calculated using east Pacific basin storms between 2011 and 2015.

BIAS, AE (kt)

No. of cases No. of hours HWFI GHMI LGEM DSHP

1634 12 22.4, 7.3 23.1, 8.0 21.6, 7.2 21.2, 7.0

1451 24 24.2, 11.4 26.8, 12.8 23.4, 11.5 21.6, 11.2

1274 36 25.6, 14.3 29.3, 16.5 25.2, 14.5 22.0, 13.8

1103 48 26.5, 16.5 28.8, 18.1 26.4, 16.8 22.4, 15.4

954 60 26.5, 17.6 27.2, 18.6 26.9, 17.8 22.7, 16.2

817 72 25.9, 17.9 25.0, 18.9 26.6, 17.7 22.5, 16.5

690 84 25.9, 18.3 23.1, 20.0 26.1, 17.6 22.4, 16.5

575 96 26.2, 18.4 22.5, 20.4 26.0, 17.4 21.9, 17.1

471 108 25.0, 18.7 21.8, 20.4 25.7, 17.0 21.7, 17.1

379 120 23.8, 18.6 21.6, 19.7 25.9, 15.9 20.8, 16.4

7 GHMI retrospective results are negatively affected by the

addition of real-time cases.
8 Except for 24-h forecasts of HWFI AE in the east Pacific basin. 9 Except for 96-h R-PRIME forecasts of HWFI.
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in a shorter and more current analysis sample, which leads

to better climatological error forecasts. At the same time,

the shorter training period can cause both versions of

PRIME to regress, because robust statistical relationships

are harder to develop with fewer cases.

Second, the gap between GHMI performance and the

rest of the models widened. Tables 2 and 3 reveal that

GHMI is the worst-performing model at almost10 every

forecast hour for both real-time and retrospective fore-

casts, and at some forecast hours, the next worst model is

over 25% better than GHMI. Deviation of track forecast

from the ensemble mean (DTRK), deviation of intensity

forecast from the ensemble mean (DFEM), absolute

DFEM (ADEM), and standard deviation of the ensemble

of intensity forecasts (SPRD) are predictors that rely on all

four evaluated models, and their relationships with bias

and AE are predicated on the fact that larger deviations

from the ensemble mean are damaging to forecast accu-

racy. However, in recent years, it has often been advan-

tageous to deviate fromGHMI, so these predictors are less

effective. The third explanation for the slumping perfor-

mance of PRIME is the lack of fitted predictors. De-

pending on the forecast hour, adding the fitted predictors

to the predictor pool can improve PRIME skill over 10%.

These fitted predictors are omitted because one of the

goals of this manuscript is to demonstrate the effectiveness

of PRIME using a simple methodology.

Figure 3 is similar to Fig. 1 but applies to the east Pacific

basin. For all models and versions of PRIME, 12–48-h AE

forecasts have significantly lower AE than climatological

AE forecasts. In general, PRIME AE forecasts for dy-

namical models are more skillful than those for statistical

models. For GHMI and HWFI, both versions of PRIME

are significantly better than their respective climatological

forecasts for all forecast intervals except 120-h R-PRIME

forecasts of HWFI AE (significant at the 90% level).

LGEM only has one other forecast interval outside of 12–

48h, 60-h R-PRIME forecasts, where a version of PRIME

has significantly lower average AE than climatological

forecasts, and DSHP has no other significant results.

Figure 3 reveals that the AE of PRIME AE forecasts

between 12 and 60h are negatively correlated with forecast

length, which is opposite of the relationship beyond 60h.

The accuracy of the models’ intensity forecasts also follows

this trend, which lowers the variance and mean AE of the

forecast sample for longer forecast intervals. This reversal in

model performance with forecast length is not observed

in the Atlantic basin, and it opposes conventional wis-

dom that uncertainty increases with forecast horizon

(Lorenz 1963). With less variability in forecast perfor-

mance and better forecasts, forecast error becomes in-

creasingly dominated by noise. In other words, random

errors, originating from imprecise best-track intensities

(Landsea and Franklin 2013) and the chaotic nature of

the atmosphere, become a larger percentage of total

error, and PRIME is less successful at explaining the

variance of the predictand.

Potential explanations for this unique model behavior

involve the strong sea surface temperature (SST) gradi-

ent that exists off the west coast of North America

[comparison to other basins’ development regions first

shown in Fig. 18 of Gray (1968)] and the extreme shear

surrounding the island ofHawaii [highlighted in Fig. 25 of

Gray (1968)]. Unlike the Atlantic basin, hospitable shear

values and SSTs for TCs are present over a small portion

of the east Pacific basin during the months of peak TC

formation. There are three potential pathways through

which these environmental conditions in the east Pacific

basin could lead to better long-range intensity forecasts.

1) A large portion of the verified long-range forecasts

involve TCs that are weakening because of cool

ocean waters. In these situations, it is hypothesized

that some of the poorly understood mechanisms

controlling TC intensity do not need to be resolved

TABLE 5. As in Table 4, but these values are calculated using retrospective forecasts for east Pacific basin storms between 2011 and 2015.

BIAS, AE (kt)

No. of cases No. of hours HWFI GHMI LGEM DSHP

1359 12 23.4, 7.6 23.0, 8.1 21.6, 7.1 21.2, 7.1

1213 24 26.1, 11.7 26.4, 13.0 23.4, 11.2 21.6, 11.4

1068 36 28.0, 14.4 28.4, 16.2 24.8, 14.0 21.7, 14.1

931 48 28.6, 16.0 27.8, 17.6 25.8, 16.0 21.7, 15.8

800 60 28.7, 16.7 26.2, 18.4 26.1, 17.2 21.2, 16.8

687 72 27.5, 16.0 23.4, 18.4 25.5, 16.9 0.0, 16.8

579 84 26.4, 15.2 20.3, 19.1 25.1, 16.3 1.2, 16.3

485 96 25.7, 14.6 1.2, 19.3 25.1, 15.7 1.8, 16.6

404 108 24.9, 15.0 1.2, 19.4 25.5, 15.2 1.7, 16.2

331 120 24.3, 15.5 0.6, 19.0 26.5, 14.4 1.7, 15.5

10 Except for 24-h retrospective forecasts.
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for forecast accuracy. For example, capturing small-

scale dynamical processes or shear interactions (Tao

and Zhang 2014; Tao and Zhang 2015; Judt et al.

2016) with the TC moisture field might not be

necessary when SST is such an overwhelming nega-

tive deterrent for intensification.

2) In the east Pacific basin, rapid weakening is often

observed immediately following rapid intensifica-

tion (RI), which could be another reason for the

unique AE trend for long forecast intervals. The

combination of land, hostile SSTs, and high shear

values provides multiple barriers for TCs to main-

tain major hurricane status in the east Pacific basin.

As a result, forecasts that incorrectly predict con-

stant intensity throughout the forecast period can be

inaccurate at shorter forecast intervals but fairly

accurate for longer forecast intervals. Two re-

cent examples from the 2015 season are Hurricane

Andres and Hurricane Hilda. Figure 4 shows the in-

tensity forecasts of LGEM and HWFI11 as well as the

0-h intensity and track estimates for each storm. Both

TCs exhibited a period ofRI followed immediately by a

period of rapid weakening because of either declining

SSTs (Andres) or rising shear (Hilda). This storm

behavior resulted in lower errors for the long-range

forecasts andhigher errors for the short-range forecasts.

3) Verification rules used here and followed by NHC

prevent some of the long-range forecasts of TCs from

being included in the forecast sample. When a TC

travels through high shear, over land, or above very

cold ocean waters, it typically decays and loses its

tropical attributes within 1 or 2 days. At this

FIG. 1. The average AE of PRIME AE forecasts, R-PRIME AE forecasts, and CLIMO and R-CLIMO AE

forecasts for HWFI, GHMI, LGEM, and DSHP. In each model subplot, the blue and black lines indicate data

originating from R-PRIME and PRIME, respectively. The solid lines illustrate PRIME results, while the dashed

lines represent climatological results. Error statistics are calculated using cases from 2011 to 2015 in the Atlantic

basin that are available for both PRIME and R-PRIME.

11 These models were selected because they are the best-

performing statistical and dynamical model, respectively. DSHP

and GHMI display similar behavior but are omitted to avoid ad-

ditional clutter in the figure.
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point, a TC will be listed as a ‘‘LO’’ (low pressure

system) or not listed in the best-track file, which

excludes these storms from verification. Hurricane

Patricia in 2015 and Hurricane Jova in 2011 are just

two examples of TCs whose long-range forecasts with

large errors never verified even though their short-

range forecasts are included in the analysis.

PRIME bias forecasts in the east Pacific basin are on

average more skillful than PRIME AE forecasts for

every model and version of PRIME. Figure 5 shows that

the AE of the bias forecasts for both versions of PRIME

is significantly less than the associated climatological

forecasts at all forecast hours. As in Fig. 3, PRIME be-

havior for 72–120-h forecasts appears quite different to

shorter forecast intervals. The relatively constant size

and variance of the predictand for longer forecast in-

tervals results in the performance of PRIME and the

climatological forecasts barely changing for 72–120-h

forecasts. This interesting trend is largely attributable to

many of the same mechanisms discussed in the previous

paragraphs.

A potential way to increase the value of PRIME

while still incorporating a simple methodology is to

combine the information contained in its bias and AE

forecasts into one consistent message for end users.

Figure 6 shows the SS of R-PRIME forecasts in the

Atlantic basin for each model based on whether the

R-PRIME AE and bias forecasts agree. SS essentially

normalizes PRIME errors with climatology errors and

is defined as

SS5 1003

�
12

�
E

PRIME

E
CLIMO

��
, (1)

where E is the average error from PRIME or climatol-

ogy at a given forecast interval. A positive SS represents

an improvement upon climatology, with the highest SS

being 100%. In Fig. 6, verified forecasts are partitioned

into two main groups: FCST AGREEMENT and FCST

DISAGREEMENT cases. Forecasts agree if both the

R-PRIME forecast AE and the absolute value of the R-

PRIME forecast bias are above or below the climatological

FIG. 2. As in Fig. 1, but the plots show the average AE of PRIME bias forecasts, R-PRIME forecasts, and CLIMO

and R-CLIMO bias forecasts.
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mean AE for a particular forecast hour–model pair.

Besides 120-h HWFI forecasts, R-PRIME AE fore-

casts perform better when they agree with bias

forecasts. By only consulting R-PRIME in these sit-

uations, end users could expect AE forecasts with

significantly higher skill while sacrificing access to

error forecasts for less than 20%–40% (depending on

the model and forecast hour) of the total sample size.

Results for R-PRIME bias forecasts as well as PRIME

AE and bias forecasts are omitted here but show

similar results.

Figure 7 shows that R-PRIME AE forecasts in the

east Pacific basin are also more skillful when they

agree with the simultaneously created R-PRIME bias

forecasts. The data in Fig. 7 are formulated and pre-

sented in a manner similar to Fig. 6. The FCST

AGREEMENT cases typically have their highest SSs

for forecast hours and models where R-PRIME AE

and bias forecasts are more skillful. In fact, there are

multiple forecast hours where the SS of the FCST

AGREEMENT cases are over 30% higher than the SS

of the FCST DISAGREEMENT cases. Further in-

vestigation is needed for determining how dependent

these results are on the threshold that defines forecast

agreement and disagreement.

PRIME’s skill, coupled with its real-time availability,

demonstrates it can enhance the value of operational in-

tensity forecasts in theAtlantic and east Pacific basins. For

the remainder of this study, PRIME forecasts are tested

for their ability to lower TC intensity forecast error.

3. PRIME applications

a. Optimal predictors

In this section, R-PRIME forecasts are applied to the

data presented in Tables 3 and 5. Retrospective data are

only considered here in order to keep forecast models

consistent in the verification and training sample and

better represent how error forecasts would operation-

ally perform (BN15). The significant predictors for each

model, basin, and predictand are almost identical to

those used to create the R-PRIME forecasts in the

FIG. 3. As in Fig. 1, but for the east Pacific basin.
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previous section.12 Tables 6 and 7 specify the three most

‘‘important’’ predictors and the sign of their weighting

coefficients for eachmodel, basin, and predictand. Here,

predictor importance is based on the average magnitude

of the weighting coefficients over all forecast intervals

and training samples. These averages help highlight the

strongest predictor–error relationships because the op-

timal predictors can change for each training sample

(i.e., predicting 2015 from the 2011–14 training sample

can yield different optimal predictors than when pre-

dicting 2011 from 2012–15), and the weighting of

predictors can change with forecast hour. The optimal

number of predictors is specified in the table and varies

among the models, predictands, and basin. Only three

predictors are listed because they are significant at all

forecast intervals, and the signs of their coefficients are

typically consistent with physical reasoning.

The predictor information in Table 6 applies to

R-PRIME forecasts in theAtlantic basin.ADEM, SPRD,

forecast intensity (FINT), and forecasted intensity change

(FIC) all have positive correlations with AE while fore-

casted distance to land (FLND) has a negative correla-

tion; the potential mechanisms justifying the signs of the

coefficients are outlined in BN15. For all the models, the

most accurate R-PRIME bias forecasts are created when

DFEM is selected as the one predictor. A majority of the

optimal predictors for AE and bias represent the un-

certainty in the atmospheric flow pattern, which implies

FIG. 4. The track and intensity of (a) Hurricane Andres and (c) Hurricane Hilda during the 2015 east Pacific

hurricane season. The black numbers on each map represent the position of the TC at the start of each day for the

month(s) listed in the title. The intensity scale is at the bottom of each map. Additionally, 0-h operational intensity

estimates (solid black line) as well as the 24-, 72-, and 120-h retrospective HWFI and LGEM intensity forecasts for

(b) Andres and (d) Hilda are also plotted. Data points along the black line are only plotted if all three forecasts are

generated at the particular time for the two models or if a forecast is verified at the time. The 24-h forecasts are

indicated by triangles, 72-h forecasts are indicated by squares, and 120-h forecasts are indicated by circles. HWFI

forecasts are colored red, and LGEM forecasts are colored green.

12 R-PRIME performance in this section closely resembles the

results shown in Figs. 1–3 and 5 but there are minor differences due

to relaxing the requirement that both real-time and retrospective

forecasts are available.
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that the statistical relationships between error and the

synoptic predictors noted in BN13 are either not robust

for the more recent forecast sample or due to the linear

regression framework.

Table 7 highlights the important predictors for

R-PRIME AE and bias forecasts in the east Pacific

basin. Based on analysis in BN15, most of the AE

predictors in Table 7 appear physically justified. Av-

erage potential intensity (APOT) and average di-

vergence (ADIV) are introduced as two important

predictors that have positive correlations with AE.

APOT is also the only bias predictor deemed optimal

that was not examined in BN15. The physical rea-

soning for the relationship of LGEMAE and ADIV is

not clear. Initial analysis indicates that the formula-

tion of LGEM is poorly capturing the connec-

tion between favorable upper-level conditions and TC

intensity, but for a definitive explanation, further in-

vestigation is needed. Understanding the relationship

of HWFI error and APOT is more straightforward.

As discussed in section 2, there is a limited area in the

east Pacific basin where SSTs, and thus APOTs, are

sufficient for TC intensification. Therefore, TCs that

undergo RI in the east Pacific basin avoid the ubiquitous

colder SSTs at higher latitudes and are clustered around

areas that have higher APOT. HWFI, like all opera-

tional models, struggles with predicting RI, which leads

to high AEs and large negative biases for storms ex-

pected to traverse regions with higher APOT. Addi-

tionally, TCs with higher APOT normally have more

potential for intensification and, thus, more room

for error.

Figure 8 shows the correlations between APOT and

HWFI AEs for 48- and 96-h forecasts in the east Pacific

basin between 2011 and 2015. If a forecast records pos-

itive (negative) bias, the data point is red (black). The R

values in the top-right corner of each plot capture the

linear correlation of APOT and AE. Both plots show

that HWFI forecasts have higher AE results for larger

APOT values. Additionally, the grouping of the black dots

for the larger AE and APOT values indicates that the

HWFI forecasts with the largestAEs are negatively biased.

Almost all of these forecasts involved HWFI not antici-

pating an RI event. Figure 9 contains the same two plots of

FIG. 5. As in Fig. 3, but for plots showing the average AE of PRIME, R-PRIME, and CLIMO and R-CLIMO bias

forecasts.
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AE versus APOT but for the Atlantic basin. Similar to the

results in the east Pacific, APOT is positively correlated

with AE but the correlation coefficients are much smaller.

At both forecast times, the red and black dots are scattered

with no trend for higher APOT values. The Atlantic basin

has more homogeneous APOT values throughout the ba-

sin, so APOT is not as adept at diagnosingHWFI forecasts

as likely to have high AE and negative bias.

APOT is just one example of a dynamical variable that

is highly correlatedwith error for theR-PRIME forecasts

of certain models in only one basin. In general, TC at-

tributes and environmental parameters appear more of-

ten as significant predictors in the east Pacific compared

with the Atlantic. Although the physical processes con-

trolling intensity change in both basins should remain

consistent, there is no theory that links forecast error

variability across the global TC basins. This result is

particularly important considering the recent idealized

model studies that aim to correlate forecast uncertainty

to a particular variable like shear, intensity, or moisture

(Zhang et al. 2014; Zhang and Tao 2013; Tao and Zhang

2015; Emanuel and Zhang 2016). For the Atlantic basin

operational intensity models, there is a lack of strong

linear relationships between these types of predictors

and error. BN15 and BN13 showed that more robust

predictor–error relationships often involve nonlinear

functions and capture howmultiple predictors can covary

with forecast uncertainty. Additionally, the predictor hi-

erarchy of importance changes among basins andmodels,

which implies that studies drawing sweeping conclusions

from isolating one variable in one basin with one model

could be oversimplifying a complex problem.

b. R-PRIME bias-corrected forecasts

Using the retrospective data and predictors described in

the previous section, R-PRIME bias predictions are de-

veloped to correct DSHP, LGEM, GHMI, and HWFI

intensity forecasts from 2011 to 2015. Figure 10 shows the

average AE of retrospective intensity forecasts in the At-

lantic basin with and without R-PRIME bias corrections.

FIG. 6. The performance of R-PRIMEAE forecasts in the Atlantic basin for HWFI, GHMI, LGEM, and DSHP

when they agree and disagree with bias forecasts. Forecasts are considered FCSTAGREEMENT cases if both the

forecastedAE and absolute value of the forecasted bias are above or below the climatological meanAEof forecasts

for the model–forecast hour combination. Black lines represent FCST AGREEMENT cases and blue lines rep-

resent FCST DISAGREEMENT cases. The boldface numbers at the bottom of each plot indicate the number of

FCST AGREEMENT cases for each forecast hour.
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The dashed lines represent the AE of the retrospective

forecasts created with the 2015 version of each model. The

solid lines capture the average AE of the forecasts that

are bias corrected with R-PRIME. For all forecast in-

tervals, the AE of bias-corrected GHMI is significantly

lower than the AE of GHMI. Bias-corrected DSHP and

LGEM forecasts have AEs that are significantly lower

than their respective 2015 retrospective models for 12–

84-h forecasts. Bias-corrected HWFI is only significantly

better than HWFI at 24 and 36h. The solid lines are

grouped together because DFEM is the only predictor in

the R-PRIME bias regression formula for all models and

forecast hours. As a result, R-PRIME bias corrections

will typically adjust forecasts closer to themean ofDSHP,

LGEM, GHMI, and HWFI.

The equivalent figure for PRIME is omitted, but it is

important to note that the AEs of the PRIME bias-

corrected models are significantly lower than the AEs of

the real-time models for all forecast hours.13 The

discrepancy between the number of significant forecast

hours for R-PRIME and PRIME is likely attributable to

the upgrades to the models. Tables 2 and 3 show theAE,

and especially the bias, of all models decreases consid-

erably when using the retrospective runs instead of the

real-time runs. The smaller biases greatly reduce the

variance in this predictand. As discussed in section 2,

random errors become a larger percentage of total error

when the magnitude of a predictand decreases, and it is

more difficult for R-PRIME to explain the variance of a

predictand. Hence, significant predictor–bias relation-

ships disappear. HWFI showed the most improvement

from using the retrospective runs, which could explain

why R-PRIME bias corrections are the least skillful for

this model.

Figure 11 is similar to Fig. 10 but conveys the per-

formance of R-PRIME bias corrections in the east

Pacific basin. The larger biases in the retrospective

models for the east Pacific basin enable R-PRIME

to produce more effective bias corrections. Again,

GHMI has the worst-performing retrospective fore-

casts, and bias-corrected GHMI has significantly lower

AE than GHMI at all forecast intervals. All other

FIG. 7. The performance of R-PRIME AE forecasts in the east Pacific basin for HWFI, GHMI, LGEM, and DSHP

when they agree and disagree with bias forecasts. The lines and numbers have the same interpretation as in Fig. 6.

13 DFEM is also the one optimal predictor for PRIME bias

forecasts.
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bias-correctedmodels are significantly better than their

respective uncorrected models between 12 and 72 h. In

general, PRIME bias corrections of real-time forecasts

for the same time period in the east Pacific basin exhibit

very similar trends in performance and statistical

significance.

Figure 11 also highlights one of the primary themes

of section 2: short- and long-range PRIME error fore-

casts in the east Pacific basin have different properties.

Therefore, it could be advantageous for PRIME bias

forecasts in the east Pacific basin to be developed

separately for 12–60- and 72–120-h forecasts. Cur-

rently, when PRIME is formulated for a model and

predictand, the selected predictors are designed to

optimize performance over all forecast hours. In

other words, the same number of predictors is used at

every forecast hour for a model, and if a predictor is

deemed unimportant at a particular forecast hour, the

weighting coefficient ideally approaches zero. However,

applying a large number of predictors that are un-

correlated with the predictand can introduce spurious

predictor–predictand relationships. In the Atlantic

basin, DFEM is the most important predictor for all

forecasts but in the east Pacific basin, DFEM only

dominates for long forecast intervals. For shorter fore-

casts, there are several synoptic predictors, such as

ADIV, APOT, and average relative humidity (ARH),

with significant correlations with bias. Adding these

parameters to the predictor pool for short-range fore-

casts could be beneficial.

To test if bias forecasts in the east Pacific basin could

be improved if R-PRIMEwas developed solely for short

forecast intervals, we examine how SS varies with the

number of predictors. In Fig. 12, the SSs of R-PRIME

bias forecasts are plotted for 1, 2, 5, 8, 10, and 20 pre-

dictors. In general, R-PRIME bias forecasts improve

TABLE 7. As in Table 6, but for entries calculated using R-PRIME forecasts in the east Pacific basin between 2011 and 2015.

Predictand

Model

AE

HWFI GHMI LGEM DSHP

No. of optimal predictors 1 3 5 5

Predictors/signs of weighting coefficients APOT 1 ADEM 1 ADEM 1 ADEM 1
ALAT 2 SPRD 1 ADIV 1 SPRD 1
ADEM 1 APOT 1 SPRD 1 FINT 1

Predictand

Model

BIAS

HWFI GHMI LGEM DSHP

No. of optimal predictors 2 1 3 3

Predictors/signs of weighting coefficients DFEM 1 DFEM 1 DFEM 1 DFEM 1
APOT 2 ARH 2 LAT 1 LAT 1
ALAT 1 ADIV 2 FINT 1 LDIS 2

TABLE 6. The three best predictors of AE and bias for each model in the Atlantic basin along with the sign of the weighting coefficients

for each predictor. For each model, the predictors are ordered (top is most significant) based on the average magnitude of their weighting

coefficients over all forecast intervals. The optimal number of predictors is listed for eachmodel and predictand; they are derived from the

different training datasets for R-PRIME during 2011–15.

Predictand

Model

AE

HWFI GHMI LGEM DSHP

No. of optimal predictors 4 3 2 3

Predictors/signs of weighting coefficients FINT 1 ADEM 1 SPRD 1 SPRD 1
ADEM 1 SPRD 1 ADEM 1 ADEM 1
FIC 1 FIC 1 FLND 2 FINT 1

Predictand

Model

BIAS

HWFI GHMI LGEM DSHP

No. of optimal predictors 1 1 1 1

Predictors/signs of weighting coefficients DFEM 1 DFEM 1 DFEM 1 DFEM 1
FINT 1 FINT 1 FINT 1 FINT 1
FIC 1 FIC 1 ASHR 2 ASHR 2
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when fewer predictors are used for long forecast in-

tervals and more predictors are used for short forecast

intervals. This behavior is visible to a lesser extent for

R-PRIME AE forecasts in the east Pacific basin but not

for R-PRIMEAE or bias forecasts in the Atlantic basin

(not shown). Still, it appears that optimizing R-PRIME

for different forecast lengths could result in more skillful

bias-corrected forecasts.

Figure 13 demonstrates the effects of creating sepa-

rate R-PRIME regression formulas for long- and short-

range bias corrections in the east Pacific basin. The

dashed lines display the AEs of bias-corrected models

created from a version of R-PRIME that optimizes

12–60-h forecasts while the solid lines represent the AEs

of R-PRIME when it is designed to yield the lowest

average AE over all forecast intervals. For all the

models, 12–60-h R-PRIME forecasts have lower AEs

when R-PRIME is developed only for short-range

forecasts. The additional predictors for short-range

forecasts reduce the weighting coefficient of DFEM

and lead to more effective bias corrections that are not

just nudging forecasts to the ensemble mean. Forecast

end users would particularly benefit from upgraded

short-range bias-corrected forecasts in the east Pacific

basin, because bias is such a large percentage of the

total error for these forecast intervals. Future re-

search should prioritize the development of PRIME

for forecast hour–model combinations with robust

predictor–error relationships rather than optimizing all

forecast hours.

c. R-PRIME modified ensembles

Multimodel ensembles are created by combining fore-

casts into a consensus forecast, typically by calculating the

FIG. 8. (top) The 48-h retrospective HWFI AE vs 48-h APOT in

the east Pacific basin. (bottom) The 96-h retrospective HWFI AE vs

96-h average APOT in the east Pacific basin. The black dots repre-

sent forecasts with a negative bias (underforecasting), and the red

dots represent forecasts with a positive bias (overforecasting). The

dashed lines represent the linear regression fits to the data, and the

correlation coefficient is located in the top-right corner of each plot.

FIG. 9. As in Fig. 8, but for results that apply to the Atlantic basin.

AUGUST 2017 BHAT IA ET AL . 1367

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 02:23 PM UTC



ensemble mean from different models initialized at the

same time. Using operational models as ensemble mem-

bers often produces excellent results because each model

generates forecasts that represent a realistic future state of

the atmosphere, and the spread of the ensemble members

captures the range of potential outcomes. The equally

weighted multimodel consensus forecast, ICON, has

provided TC intensity guidance in the Atlantic and east

Pacific basins since 2007 and routinely registers the lowest

errors out of all other intensity guidance (Cangialosi and

Franklin 2016; Cangialosi and Franklin 2013; Franklin

2010). The Florida State Super Ensemble (FSSE) is the

only unequally weighted ensemble that generates opera-

tional intensity forecasts (Krishnamurti et al. 2000). The

FSSE technique uses the forecast errors of the individual

models during the training period to create weighting

coefficients, and the models are then linearly combined to

predict future forecast error. As a result, models are

weighted solely on how they have recently performed, and

synoptic conditions experienced by the TC as well as

storm-specific characteristics are not considered in the

creation of FSSE forecasts.

With the success of consensus TC intensity forecasts,

it is surprising that alternatives to FSSE and equal

weighting have not surfaced. One of the potential ex-

planations for the lack of research in this area is that

many climate and economics studies have demonstrated

that combining different forecast systems with equal

weights is typically the best approach to multimodel

forecasting (Doblas-Reyes et al. 2005; Wallis 2011).

However, it is not clear whether the results in these

disciplines are pertinent to the challenge of TC intensity

forecasting. TC forecasts focus on a smaller portion of

the globe than climate studies, and in limited regions,

unequal weighting can provide significantly better re-

sults than equal weighting (DelSole et al. 2013). Also,

many TCs are forecasted every year, and each TC is

accompanied by numerous forecast verifications, which

results in the sample sizes for TC studies typically being

an order of magnitude larger than those observed for

climate forecasting (BN13; Doblas-Reyes et al. 2005;

Rodrigues et al. 2014). Additionally, economic research

finds that unequal weights can be beneficial when en-

semble members are developed from different in-

formation sources (Granger 1989). For TC intensity

forecasting, each model uses different mathematical

formulations to capture atmospheric processes, and

therefore the best model can change based on the TC

and the situation it is experiencing (BN13; BN15). The

larger error variability between models increases the

chance that unequal weighting will outperform equal

weighting (DelSole et al. 2013).

FIG. 10. The averageAEof retrospectiveHWFI,GHMI, LGEM, andDSHP forecasts before

and after R-PRIME bias corrections. The solid lines represent the bias-corrected models, and

the dashed lines represent the original models. The plotted data are derived fromAtlantic basin

cases listed in Table 3.
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As a result, we investigate whether R-PRIME output

can be manipulated to create ensembles that are more

skillful than ICON. Two main categories of ensemble

modifications are applied toDSHP, LGEM,GHMI, and

HWFI forecasts to produce seven unique ensembles.

For the first group of ensembles, R-PRIME bias andAE

forecasts are used to alter or remove individual models

before taking the mean of the modified ensemble. Four

ensembles are assembled based on this methodology:

Correct Worst, Bias Corrected, Exclude Worst (AE),

and Exclude Worst (bias). The second set of ensembles

involves an unequal-weighting approach where R-PRIME

AE and bias predictions are used to weight models in-

versely proportional (higher errors correspond to lower

weights) to their expected error. This weighting tech-

nique is featured in three ensembles: Unequal (AE),

Unequal (jBiasj), and Unequal (AE SQR). Figures 14

and 15 are included as diagrams that explain how each of

the seven ensembles is created.

Figure 16 shows the SS of each of the seven ensembles

relative to ICON for the Atlantic basin. Besides 120-h

forecasts by the Unequal (jBiasj) ensemble, all of the

ensembles’ 60–120-h forecasts have lower AEs than

ICON. Ensembles developed from R-PRIME AE fore-

casts generally outperform the ones developed from

R-PRIMEbias forecasts, which is likely a result ofDFEM

acting as the only significant predictor for R-PRIME bias

forecasts. The Unequal (AE) and Unequal (AE SQR)

ensembles have positive SSs at every forecast hour, and

averaged over all forecasts, they achieve the highest SSs

out of any ensemble.Neither ensemblehas a forecast hour

where its AE is significantly lower than ICON. However,

if serial correlation is ignored when establishing statistical

significance, the AE of the Unequal (AE) ensemble

would be significantly lower than the AE of ICON for

24–120-h forecasts. Also, the 48- and 96–120-h forecasts

produced by the Unequal (AE SQR) ensemble would be

significantly better than the corresponding forecasts pro-

duced by ICON.

Figure 17 displays the performance of the R-PRIME

modified ensembles in the east Pacific basin.Many of the

observed trends in the Atlantic basin are reversed in the

east Pacific basin. Although the Unequal (AE) ensemble

is the only ensemble to record positive SSs at all forecast

hours, the ensembles modified using R-PRIME bias, not

AE, predictions generally produced the highest SSs. As

expected from section 2, R-PRIME modified ensembles

produce short-range forecasts that are considerably more

skillful than their long-range forecasts. Excluding 72-h

forecasts generated with the Exclude Worst (bias) en-

semble, all of the ensembles’ 12–72-h forecasts have lower

AEs than ICON. TheBias Corrected,Unequal (AE), and

Unequal (jBiasj) ensembles’ 12–60-h forecasts have sig-

nificantly lower AEs than ICON.

Following the methodology used to create the dashed

lines in Fig. 13, R-PRIME 12–60-h bias forecasts can be

FIG. 11. As in Fig. 10, but for the east Pacific basin. The plotted data are derived from cases

listed in Table 4.
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optimized to further improve the short-range ensemble

forecasts in the east Pacific basin. Figure 18 shows the

SSs of the Bias Corrected, Unequal (jBiasj), Correct
Worst, and Exclude Worst (bias) ensembles for 12–60-h

forecasts when R-PRIME is developed only for these

forecasts. All of the ensembles are significantly better

than ICON at the 99% confidence level for the plotted

forecast intervals. The Bias Corrected ensemble pro-

vides the forecasts with the lowest AEs at all forecast

intervals, and its SS values range from 6% to 15%.

In both basins, PRIME error forecasts for real-time

models are also tested for their ability to produce skill-

ful ensembles. The best-performing modified ensembles

are almost identical for PRIME and R-PRIME, and

similar relationships between forecast length and error

are observed. The performance of the PRIME- and

R-PRIME-modified ensembles varied based on how

well the PRIME and R-PRIME error forecasts per-

formed. As a result, the R-PRIME-modified ensembles

have lower AEs than the PRIME-modified ensembles

for a homogenous dataset. However, in the Atlantic

basin, the PRIME ensembles generally have higher SSs

than the R-PRIME ensembles, whereas in the east

Pacific basin, the opposite behavior is observed. There

are two mechanisms that explain this discrepancy.

First, HWFI is dramatically improved in the At-

lantic basin when switching from real-time forecasts

to retrospective forecasts, and no model in the east

Pacific basin shows the same level of improvement.

As a result, ICON performance greatly improves in

the Atlantic basin when retrospective forecasts are

used, which makes it more difficult for R-PRIME to

produce modified ensembles with positive SSs. Sec-

ond, replacing real-time forecasts with retrospective

forecasts uniquely affects the variance of the ensem-

ble members in each basin. In the Atlantic basin, the

average ensemble variance for 36–120-h forecasts

decreases between 6% and 36% when retrospective

forecasts are used instead of real-time forecasts.

When retrospective forecasts replace real-time fore-

casts in the east Pacific basin, the average ensemble

variance for all forecast hours remains within

from 26% to 9% of the original variance. Unequally

weighted ensembles are typically the most skillful

when there is higher variance between the forecasts

of the ensemble members (DelSole et al. 2013).

FIG. 12. The SS of R-PRIME bias forecasts relative to climatological bias forecasts in the east Pacific basin for

each model. The different lines capture how the performance of R-PRIME changes with the number of predictors

inputted into the stepwise multiple linear regression.
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Therefore, when intensity forecasts produced by the

different models show more agreement and are more

accurate, there is less room for R-PRIME to detect

error-prone situations.

Overall, the ensemble postprocessing techniques

using PRIME yielded mixed results. Among all the

tested ensembles in the Atlantic basin, the largest ob-

served improvement for a forecast hour is only a 4%

decrease in AE [Unequal (AE SQR) ensemble at 96 h]

compared with ICON. However, for short-range fore-

casts in the east Pacific basin, the ensembles based on

R-PRIME bias forecasts appear to be a significant

upgrade over the current best-available intensity

guidance, ICON. SSs in both basins can be increased

by introducing nonlinear parameters to the predictor

pool but these results are beyond the scope of this

study. These predictors would increase the skill of

PRIME forecasts and lead to more accurate modified

ensembles. Additionally, Bhatia (2015) showed that

PRIME- and R-PRIME-modified ensembles provided

the biggest upgrade over ICON when their forecasts

deviated more from ICON forecasts. Additional tech-

niques for identifying better-performing PRIME en-

semble forecasts will be explored in future research.

4. Conclusions and future work

An accurate portrayal of the limitations of a weather

forecast is one of the simplest and most effective ways of

enhancing forecast value. BN15 developed the PRIME

model using statistical techniques and easily accessible

data to communicate the expected error of TC intensity

forecasts. PRIME was able to skillfully predict the bias

and AE results of DSHP, LGEM, GHMI, and HWFI in

the Atlantic basin, which paved the way for its opera-

tional testing in 2015. Expanding on the work of BN15,

PRIME performance was examined in the east Pa-

cific and Atlantic basins for the 2011–15 hurricane sea-

sons. Additionally, R-PRIME was developed from

retrospective forecasts using the 2015 version of each

FIG. 13. The average AE of bias-corrected forecasts for two formulations of R-PRIME in the east Pacific basin.

The solid black line for each model shows the average AE of R-PRIME bias-corrected forecasts when optimizing

the independent verification results for all forecast hours while the dashed black line represents the average AE of

bias-corrected forecasts developed solely for 12–60-h bias forecasts.
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model and also evaluated. In both basins, PRIME and

R-PRIME forecasts outperformed climatological error

forecasts for all forecast hours and were significantly

better than climatological forecasts for a majority of

forecast hours.

PRIME’s ability to accurately predict error implied

it could serve as a tool for improving intensity fore-

casts. As a result, R-PRIME bias forecasts were tested

as corrections to model forecasts. The bias-corrected

models achieved AE values that were lower than the

original models’ AE values for all forecast hours and

basins. Finally, PRIME forecasts provided the foun-

dation for removing, weighting, and correcting models

in seven unique ensembles. Two groups of ensemble

modifications were tested and compared with ICON.

These ensembles outperformed ICON for a majority

of forecast hours in both basins and registered statis-

tically significant improvements for several forecast

intervals.

Thus far, we have incorporated data from the four

most skillful TC intensity models to assemble PRIME

forecasts. Starting in 2017, the GHMI model will not be

run operationally in the Atlantic or east Pacific basins,

and therefore PRIME will need to be formulated using

a different ensemble of models. Preliminary analyses

indicate that PRIME forecasts for LGEM, DSHP, and

HWFI actually improve when GHMI is excluded. This

surprising result is likely due to GHMI performance

considerably worsening in recent years and negatively

affecting PRIME predictors (SPRD, DFEM, ADEM,

etc.) for the other models. As mentioned by BN15,

global model forecast performance has recently im-

proved, and forecasts from these models are more con-

sistently appearing in the a-decks. As a result, the

European Centre for Medium-Range Weather Fore-

casts (ECMWF) model and GFS will replace GHMI in

future iterations of PRIME.

In this study, much like in BN15, error forecasts had

higher SSs when retrospective data were used to train

PRIME instead of real-time data. Unfortunately, year

to year, the length and size of the retrospective sample

changes considerably for the dynamical models. For

example, before the 2016 hurricane season, retro-

spective data for HWFI were only available for parts

of 2013–15, and retrospective data for GHMI were

only available for 2014 and 2015. These hurricane

seasons were relatively inactive, so statistical re-

lationships between predictors and errors were less

robust. Therefore, the added benefit of having forecast

models remain consistent in the verification and

training sample might be outweighed by the smaller

sample sizes. It is possible that training PRIME with

FIG. 14. The process for assembling the four equally weighted ensembles is depicted. Here,

FINTm represents the forecasted intensity of each model m, and FINTENS is the forecasted

intensity of the R-PRIME modified ensemble. The Correct Worst and Bias Corrected

ensembles are computed by averaging the four models’ intensity forecasts after the applicable

R-PRIME bias forecast(s) is/are used to correct the model(s). For the Exclude Worst en-

sembles, R-PRIME forecasts are used to isolate the model with the highest AE or bias and that

model is excluded from the calculation of the ensemble mean.
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real-time forecasts will lead to better operational re-

sults during the 2016 hurricane season. A comparison

of how PRIME and R-PRIME bias and AE forecasts

performed during 2016 will be shared in a future pub-

lication. Based on the potential value of R-PRIME

forecasts, it would be beneficial at the start of each

hurricane season to have retrospective forecasts for at

least the previous five hurricane seasons.

For the entirety of this study, PRIME was developed

using the same objectivemethodology discussed inBN15,

with the exception that nonlinear predictors were omit-

ted. The goal of this adjustment to PRIME was to dem-

onstrate the effectiveness of a simpler multiple linear

regression scheme. To counteract some of the accuracy

lost by neglecting these extra predictors, we tested if

combining the forecasts of the two predictands could

isolate forecasts with higher skill a priori. In both basins,

R-PRIMEAE forecasts that agreed with R-PRIME bias

forecasts typically resulted in SSs that were 5%–25%

higher than SSs of AE forecasts that disagreed with

R-PRIME bias forecasts. Additionally, for all forecast

hours, the sample size for the forecast agreement cases

was never less than 60% of the total forecast sample. This

practice could easily be implemented in operations to

obtain PRIME forecasts with higher SSs.

Isolating specific forecast intervals for PRIME

development (BN15) is another approach for pro-

ducing more skillful error forecasts while maintaining

the same basic statistical framework. BN13 first ob-

served how dynamical parameters exhibited differ-

ent relationships with error based on forecast length.

As a result, a version of R-PRIME was developed for

just 12–60-h bias forecasts in the east Pacific basin.

These specific forecast intervals were isolated in the

east Pacific basin because PRIME bias forecasts and

the bias of the models’ intensity forecasts showed

very different patterns of behavior for short- and

long-range forecasts. When R-PRIME was optimized

for these short forecast intervals, the AE of the

R-PRIME bias forecasts was reduced, and the Bias-

Corrected ensemble achieved an SS of nearly 15%

relative to ICON for 48-h forecasts. Additional re-

search into isolating other forecasts hours and pre-

dictands for PRIME development seems like a

worthwhile endeavor.

The separate analysis and development of PRIME in

the two basins provided some insights into what controls

the performance of error forecasts. There were four key

discrepancies in PRIME performance in the different

basins:

FIG. 15. An overview of how R-PRIME is used to create three unequally weighted ensem-

bles. For the Unequal (AE) ensemble, PRIME AE forecasts F_AEm quantify the weight Wm

for each model m. A similar ensemble, Unequal (AE SQR) is computed using the same

equation asUnequal (AE), but with the forecastedAE squared. This alteration adds additional

weight to the models that R-PRIME expects to have the lowest AE. The Unequal (jBiasj)
ensemble uses the absolute value of theR-PRIMEbias forecasts jF_BIASmj to replace F_AEm.

Once the weights are calculated for each model, each model’s FINT is multiplied by its com-

puted Wm to obtain FINTENS.
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1) PRIME SSs relative to climatological forecasts

typically increased with forecast length for both

predictands in the Atlantic basin but decreased with

forecast length in the east Pacific basin. This error

behavior was attributed to the limited area conducive

to intensification in the east Pacific basin compared

with the Atlantic basin. As a result, storms in the east

Pacific basin tend to rapidly weaken immediately

FIG. 17. As in Fig. 16, but for the east Pacific basin.

FIG. 16. The average skill score relative to ICON of seven ensembles modified by R-PRIME

in theAtlantic basin. These ensembles are formulated usingDSHP, LGEM,GHMI, andHWFI

retrospective forecasts from 2011 to 2015 and are verified with best-track information.
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after rapid intensification and lose their TC status for

verification. This unique TC behavior in the east

Pacific basin reduces the error and error variance of

long-range forecasts, which results in less skillful

error forecasts.

2) The R-PRIME’s AE forecasts in the Atlantic basin

have comparable skill to the bias forecasts, but in the

east Pacific basin, R-PRIME’s bias forecasts have

much higher skill than its AE forecasts. R-PRIME

struggles to detect meaningful predictor–bias re-

lationships in the Atlantic basin compared with the

east Pacific basin because the models’ intensity

forecasts have considerably less bias and variance in

the bias. Additionally, DFEM was determined to be

the only significant predictor of bias in the Atlantic

basin. In this scenario, intensity forecasts are fore-

casted to return to the ensemble mean, which often

results in poor error forecasts.

3) The R-PRIME-modified ensembles showed similar

SSs to PRIME-modified ensembles (not shown) in

the east Pacific basin, while PRIME ensembles

showed much higher SSs than R-PRIME ensembles

in the Atlantic basin. In the Atlantic basin, the

retrospective forecasts for the dynamical models

provided significantly better forecasts than the real-

time models. Similar verification trends were not

observed in the east Pacific basin. This sharper

decrease in error due to switching from real-time

forecasts to retrospective forecasts greatly reduced

the ensemble variance,making it harder forR-PRIME

to correctly weight the models.

4) A different set of optimal predictors was used for

R-PRIME forecasts in each basin. APOT was high-

lighted as a critical predictor for bias and AE in the

east Pacific basin for multiple models but did not

appear to be important in the Atlantic basin. This

result suggests that the importance of parameters for

error predictions can vary with the basin.

In conclusion, this study has confirmed that PRIME

can predict intensity forecast error more accurately

than climatological forecasts, and PRIME can serve

as a tool to lower intensity forecast error. Multiple

linear regression appears to be a sufficient benchmark

model for forecasting TC intensity error but several

more complex statistical schemes are available. Non-

linear methods and neural networking are two poten-

tial alternatives for producing error forecasts. Based on

the fact that PRIME- and R-PRIME-modified en-

sembles varied according to how well PRIME and

R-PRIME error forecasts performed, future work im-

proving PRIME forecasts would likely lead to more

accurate modified ensembles. After evaluating other

error-forecasting techniques, guidance on TC intensity

FIG. 18. The average skill score relative to ICON of the four best-performing ensembles

modified byR-PRIME in the east Pacific basin. These ensembles are formulated from a version

of R-PRIME that was designed to maximize performance between 12 and 60 h.
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forecast performance should also be produced in other

TC-prone regions across the world. TC landfalls in the

Atlantic basin represent less than 1/3 of the global

landfall total (Weinkle et al. 2012), so reliable error

forecasts would naturally be valuable in other basins. If

successful, these forecasts could be produced globally

and lead to more informed protocols for hurricane

evacuations and storm preparations, which would ul-

timately save lives.
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